Epitaxial growth of gallium nitride thin films on A-plane sapphire by molecular beam epitaxy

نویسندگان

  • D. Doppalapudi
  • E. Iliopoulos
  • S. N. Basu
  • T. D. Moustakas
چکیده

In this article, we propose a crystallographic model to describe epitaxy of GaN on ~112̄0! sapphire ~A plane!. The ~11̄02! cleavage plane in sapphire is shown to extend to the GaN lattice as the ~112̄0! plane, facilitating the formation of cleaved facets. It is shown that, although the lattice mismatch is much smaller than in the case of epitaxy on ~0001!, the difference in the planar symmetry in this case results in high-strained bonds near the interface. The use of nitridation and a low temperature buffer is therefore necessary. A systematic study of GaN growth on the A-plane sapphire by plasma-assisted molecular beam epitaxy was carried out to study the effects of plasma nitridation of the substrate and the growth of a low temperature GaN buffer on the structure and optoelectronic properties of the films. Transmission electron microscopy ~TEM! studies indicate that films grown on substrates which were not nitridated prior to growth have a significant fraction of zinc-blende domains and poor orientation relationship with the substrate. On the contrary, nitridation leads to films with superior structural and optoelectronic properties. The low temperature GaN buffer, grown on nitridated substrates, was found to also have a pronounced effect on the optoelectronic properties of the GaN films, especially in those with low carrier concentrations. The correlation between TEM and photoluminescence studies suggests that the transition at 3.27 eV can be attributed to the cubic domains in the films. © 1999 American Institute of Physics. @S0021-8979~99!02507-4#

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

Articles you may be interested in Synthesis of atomically thin hexagonal boron nitride films on nickel foils by molecular beam epitaxy Appl. Optical properties of Si-and Mg-doped gallium nitride nanowires grown by plasma-assisted molecular beam epitaxy J. In situ investigation of growth modes during plasma-assisted molecular beam epitaxy of (0001) GaN Appl. Magnetic properties of Mn x Ti 1 − x ...

متن کامل

Temperature dependence of molecular beam epitaxy of GaN on SiC (0001)

High quality gallium nitride (GaN) thin films have been grown on 6H-silicon carbide (0001) substrates at varying substrate temperatures using molecular beam epitaxy and characterized at low and high film thicknesses. The epitaxial layers show two regimes in temperature distinguishable by different morphology. For film thicknesses around the critical thickness, low temperature growth is two dime...

متن کامل

Controlled growth of gallium nitride single-crystal nanowires using a chemical vapor deposition method

Chemical vapor deposition (CVD) using gold nanoparticles as the catalyst to grow high-quality single-crystal gallium nitride nanowires was developed. This method enables control over several important aspects of the growth, including control of the nanowire diameter by using monodispersed gold clusters, control of the nanowire location via e-beam patterning of the catalyst sites, and control of...

متن کامل

Epitaxial growth of ferromagnetic δ-phase manganese gallium on semiconducting scandium nitride (001)

Adam J. Hauser and Fengyuan Yang Department of Physics, The Ohio State University, 191 Woodruff Avenue, Columbus, Ohio 43210, USA (Dated: August 22, 2010) Abstract Ferromagnetic δ-phase manganese gallium layers with Mn/(Mn + Ga) = 60% have been successfully grown on ScN(001) by molecular beam epitaxy, expanding possibilities for ferromagnetic layers on nitride semiconductors. The in-plane epita...

متن کامل

Molecular beam epitaxial growth of gallium nitride nanowires on atomic layer deposited aluminum oxide

Semiconductor nanowires have received increasing focus from researchers due to their one dimensional characteristics, which offer new horizons for device designs. Nanowire growth has been shown to yield crystalline material on non-lattice matched substrates. Concerning gallium nitride nanowires, common growth substrates have been silicon (100) and (111) substrates. This manuscript discusses the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999